Cytosine ribose flexibility in DNA: a combined NMR 13C spin relaxation and molecular dynamics simulation study

نویسندگان

  • Elke Duchardt
  • Lennart Nilsson
  • Jürgen Schleucher
چکیده

Using (13)C spin relaxation NMR in combination with molecular dynamic (MD) simulations, we characterized internal motions within double-stranded DNA on the pico- to nano-second time scale. We found that the C-H vectors in all cytosine ribose moieties within the Dickerson-Drew dodecamer (5'-CGCGAATTCGCG-3') are subject to high amplitude motions, while the other nucleotides are essentially rigid. MD simulations showed that repuckering is a likely motional model for the cytosine ribose moiety. Repuckering occurs with a time constant of around 100 ps. Knowledge of DNA dynamics will contribute to our understanding of the recognition specificity of DNA-binding proteins such as cytosine methyltransferase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transfer RNA structure by carbon NMR: C2 of adenine, uracil and cytosine.

Fourier transform 13C NMR spectra of E. coli tRNA enriched on 13C in either position 2 of adenine (60 atom % 13C) or in position 2 of uracil (82%) and cytosine (63%) were taken at 25.16 MHz over the temperature range 10 degrees - 76 degrees. For C2 of adenine the peak as initially 5 ppm wide, but narrowed to 0.5 ppm as the molecule unfolded. C2 of uracil displayed behavior similar to that of ad...

متن کامل

Molecular dynamics studies of NMR relaxation in proteins.

There is a growing awareness that the visualization of proteins as large rigid molecules, each of which can be described by a single static structure, is inadequate. Instead, it is now realized that proteins undergo structural fluctuations which span a range of times from subpicoseconds to milliseconds or longer. In this report we are concerned with the relation between protein fluctuations occ...

متن کامل

Collective Reorientational Motion and Nuclear Spin Relaxation in Proteins

Significant progress in NMR methodology for measuring spin-relaxation data at many different 15N and 13C sites in proteins demands new and increasingly sophisticated ways of data interpretation. Recent work of our group concerning the use of anisotropic and reorientational collective motional models for spin-relaxation interpretation is briefly reviewed and a number of important aspects of coll...

متن کامل

13C NMR Spin-Lattice Relaxation and Conformational Dynamics in a 1,4-Polybutadiene Melt

We have performed molecular dynamics (MD) simulations of a melt of 1,4-polybutadiene (PBD, 1622 Da) over the temperature range 400-273 K. 13C NMR spin-lattice relaxation times (T1) and nuclear Overhauser enhancement (NOE) values have been measured from 357 to 272 K for 12 different resonances. The T1 and NOE values obtained from simulation C-H vector P2(t) orientational autocorrelation function...

متن کامل

Site-selective 13C labeling of histidine and tryptophan using ribose

Experimental studies on protein dynamics at atomic resolution by NMR-spectroscopy in solution require isolated 1H-X spin pairs. This is the default scenario in standard 1H-15N backbone experiments. Side chain dynamic experiments, which allow to study specific local processes like proton-transfer, or tautomerization, require isolated 1H-13C sites which must be produced by site-selective 13C labe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2008